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■ Abstract The family of adrenergic receptors (ARs) expressed in adipocytes in-
cludes three siblingβARs and twoαAR cousins. Together they profoundly influence
the mobilization of stored fatty acids, secretion of fat-cell derived hormones, and the
specialized process of nonshivering thermogenesis in brown adipose tissue. The two
types of fat cells that compose adipose tissue, brown and white, are structurally and
functionally distinct. Studies on the mechanisms by which individualβAR regulates
these cell-specific functions have recently uncovered new signal transduction cascades
involved in processes traditionally ascribed to adenylyl cyclase/cAMP/protein kinase
A system. They illustrate howβAR signaling can orchestrate a coordinated set of
intracellular responses for fine control of metabolic balance.

INTRODUCTION

Research over the past decade has provided an unprecedented expansion of our
knowledge about the physiology and molecular biology of the “adipose organ.”
Among the newly recognized functions, adipose tissue is now appreciated to be
a bona fide endocrine organ capable of secreting a plethora of biologically active
substances with local and/or systemic actions (1–7). Prehaps the first and most
important event in this new era of adipocyte biology was the positional cloning of
theob locus encoding a protein now called leptin (8), the long-sought lipostatic
factor postulated 50 years ago by Kennedy (9) and supported biochemically by
the elegant parabiosis experiments of Coleman (10). Expressed in adipose tissue,
leptin is a genuine adiposity signal, whose pleiotropic effects include decreasing
appetite and increasing energy expenditure through neuroendocrine action in the
central nervous system (reviewed in References 11, 12). Another exciting new
fat cell–derived factor is the adipocyte complement-related protein of 30 kDa
(Acrp30)/adipoQ/adiponectin (13–15), which appears, provisionally, to possess
insulin sensitizing activity. With these few examples there is a growing list of
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products secreted by adipose tissue, which includes many other peptide hormone
and proinflammatory cytokines (16–20), all of which are potential regulators of fuel
homeostasis and suspected mediators of insulin resistance. With the clinical asso-
ciation between obesity and insulin resistance (21–23) and the first “prescription”
for reversing early stage glucose intolerance being weight reduction (24), there has
been great excitement over the discovery of fat–cell–secreted molecules that may
contribute, together with free fatty acids themselves, to insulin resistance. In light
of these discoveries, we must also not overshadow similarly exciting findings on
the more traditional, basic role of the tissue, which is to be a temporary storage site
for nonesterified fatty acids (NEFAs) that are readily accessible when required. In
this review, we discuss adipose tissue heterogeneity from the macroscopic to the
molecular levels and the central role of the sympathetic nervous system in lipid
metabolism, and, in doing so, revisit the adrenergic control of fat cell lipolysis and
thermogenesis, including some new developments in our understanding of these
processes.

STRUCTURE AND FUNCTIONAL FEATURES OF
WHITE AND BROWN ADIPOSE TISSUE

Morphological Aspects

The mammalian adipose organ is composed of subcutaneous and visceral fat de-
pots, themselves composed of two tissue types that have critical and interrelated
roles in energy balance (25–27). The main characteristics of these adipose tis-
sue types are briefly listed in Table 1 and extensively described in the following
paragraphs. White adipose tissue (WAT) is populated mainly by white adipocytes
and yet can contain a variable amount of brown adipocytes (28–33). Conversely,
brown adipose tissue (BAT) is composed almost exclusively of brown adipocytes.
Cells in certain fat depots appear to be able to “change” between the white and
brown adipocyte phenotype in an age- or environment-dependent manner (27,
29, 30, 32–34). Now under debate in the field is the possibility of transdifferen-
tiation between the WAT and BAT phenotype. Although seemingly heretical, if
true, it adds another level of plasticity to the adipose organ (35). Both adipose
tissue types are able to store NEFAs as triacylglycerol (TG), but whereas WAT
TG hydrolysis satisfies the energy needs of the whole organism, fatty acids re-
leased from BAT are used within the tissue to promote nonshivering thermogenesis
(36–39).

WAT is the predominant type of adipose tissue in adult mammals; its amount
usually increases with age, and in obese individuals it can account for more
than half of total body weight. In healthy adult humans, it accounts for 15%–
20% of body weight in men and 20%–25% in women. The principal cell type
of WAT contains a single (unilocular) and large (20–200µm) lipid droplet, re-
sulting in the near disappearance of the cytoplasm and compression of the nu-
cleus underneath the plasma membrane (40). These cells are grouped into small
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TABLE 1 Some basic characteristics of WAT and BAT

WAT BAT

Vascular systema + ++(TN), +++(CE)

SNS innervation ++ +++
White adipocytes +++ ++
Brown adipocytes + +++(rodents),+/−(human)b

Mitochondrion + ++(TN), +++(CE)

Lipid droplets Unilocular Multilocular

BARs subtypes +++(β3), +(β1), +++(β3), +(β1),
+/−(β2) in rodents +/−(β2) in rodents

+++(β2), ++(β1), +++(β2), ++(β1),
+/−(β3) in humanc +(β3) in humanc

Leptin +++ +/−
Type II deiodinase +/− +(TN), +++(CE)
activity

PGC-1α +/− +(TN), +++(CE)

UCP1 +/− +(TN), +++(CE)

UCP2 + +
UCP3 +/− +
TN, thermal neutrality; CE, cold exposure.
aReferences are listed in the text.
bBAT in adult human is restricted to the mixed type perirenal adipose tissue.
cBecause no good antibody or human specific ligands existed when assessed, this should be revisited.

lobules surrounded by connective tissue septae. WAT is considered to be less
well vascularized than BAT, but, nevertheless, it displays an extensive capillary
bed reaching each septae and therefore most adipocytes (41, 42). Anatomical and
histologic observations show direct sympathetic innervations of white adipocytes
originating from the central nervous system (43, 44). Most of these catecholamin-
ergic nerves are in proximity to the vasculature (45, 46). Visceral fat depots
appear to be more richly innervated in contrast to the subcutaneous fat depot
(47).

BAT is a thermogenic organ populated by small (20–40µm) adipocytes char-
acterized by numerous (multilocular) lipid droplets. BAT is present in essentially
all mammals at birth and is responsible for diet- and cold-induced nonshivering
thermogenesis (48–50). The distinctly russet tint of BAT derives from its rich vas-
culature, each adipocyte receiving up to five capillaries, and to its population of
brown adipocytes, which are densely packed with large mitochondria (25, 42, 51).
Within these mitochondria resides a unique molecule that has the ability to allow
a proton leak and, therefore, uncouple oxidative respiration from ATP production
(52, 53). Also previously called thermogenin (37, 54), the gene for this protein
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was cloned almost 20 years ago and is now termed uncoupling protein or UCP1
(55). In most mammals, BAT is most abundant during the perinatal period. But in
contrast to rodents, which retain a distinct BAT depot in the interscapular region,
adult humans do not have homogenous BAT depots. Nevertheless, one can observe
variable quantities of brown adipocytes dispersed through several of the typical
WAT depots in humans (30, 31). BAT is very richly innervated by the sympathetic
nervous system (SNS), much more than WAT, as both the vascular system and the
adipocytes are abundantly innervated (56–58).

Molecular Aspects of Adipogenesis and β-Adrenergic
Receptor Expression

Extensive studies of white preadipocyte cell lines, such as the 3T3-F442A and
3T3-L1, have concluded that, at least for white adipocytes, two families of tran-
scription factors are largely responsible for the commitment to and maintenance of
adipocyte differentiation: the CCAAT/enhancer binding proteins (C/EBPs) (59–
65) and peroxisome proliferator-activated receptorγ (PPARγ ) (66–68). This topic
has been extensively reviewed by others (69–72).

Regarding theβARs in adipocytes, theβ1AR andβ2AR are present at low
levels in the preadipocyte stage (73–76). Theβ3AR is expressed only upon full
differentiation (77, 78); this is due to an absolute requirement for the transcription
factor C/EBPα (78). Although there is widespread need by most adipocyte genes
for PPARγ , curiously, the 5.3-kb fragment of the mouseβ3AR promoter can
appropriately target expression of the receptor to WAT and BAT in vivo (T.L. Martin
& S. Collins, unpublished), but binding sites for PPARγ have not been found.

Although the cascade of transcriptional events driving adipogenesis in white
fat has been extensively studied, this is not the case for brown fat. The adipogenic
white adipocyte cell lines have existed for over 25 years (79), but equivalent cell
culture models of brown fat have come into existence only in the past few years (80–
82), and yet most do not mimic endogenous BAT quite as well as white adipocyte
models do. For this reason, studies on brown fat have lagged. Moreover, recent
results suggest that the events involved in brown adipocyte differentiation will not
necessarily mirror those in WAT. For example, mice with a targeted disruption of
the C/EBPα gene lack detectable WAT, but they nevertheless appear to have differ-
entiated BAT as defined by morphological criteria and expression of UCP1 (83).
Although the factors distinguishing WAT from BAT are not known, one molecule
that is likely to be a key player is a nuclear coactivator isolated from BAT with a
role in regulating mitochondriogenesis and oxidative metabolism called PPARγ

coactivator-1 (PGC-1α) (84). PGC-1α is readily detected in brown fat, but only
very weakly expressed in WAT. Consistent with a role for this coactivator in the
phenotypic distinctions between these cell types, ectopic expression of PGC-1α in
cultured white adipocytes induces genes that are associated with the BAT pheno-
type, including UCP1 and components of the electron transport chain. Its expres-
sion in vivo is also cold-inducible in BAT and skeletal muscle, and this stimulation
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is mediated by increases in cAMP (84, 85). For theβARs, there is a very similar
pattern to the control of their expression, although the relative amounts ofβ1AR
are substantially greater, and the triplet transcripts forβ3AR show a distinctly
different pattern that favors the smaller 2.1 kb form (Figure 1). The molecular
basis of these different transcripts are not fully defined, but do not appear to alter
the coding sequence of the protein and are more likely associated with differ-
ential splicing with untranslated portions of the transcript (86). There is some
evidence for alternative transcription start sites (87, 88), but this has not been
confirmed.

Figure 1 Transcripts forβ3AR in WAT and BAT. Northern blot showing the three
distinct species of mRNAs for theβ3AR (86, 183). The relative abundance of these
transcripts differs between WAT (W) and BAT (B). Size markers adjacent to the image
are in kilobases.
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ROLE OF THE SYMPATHETIC NERVOUS SYSTEM AND
β-ADRENERGIC RECEPTORS IN LIPOLYSIS

When nutrients are plentiful, adipocytes synthesize and also take up NEFAs, which
are then esterified and routed inside lipid droplets in the form of triacylglycerol.
The amount stored reflects the cumulative sum over time of the differences between
energy intake (food consumption) and energy expenditure (physical activity as well
as obligatory and adaptative thermogenesis, discussed below) (89). The net efflux
of NEFAs from adipose tissue alternates between being maximal after an overnight
fast or during a bout of exercise to being minimal or nonexistent 60–120 min after a
meal (90, 91). The raison d’ˆetre of this fluctuation is first to meet minute-to-minute
metabolic demands. It can be postulated that it also serves to protect nonadipose
tissue against “lipotoxicity”: inappropriate accumulation of NEFAs with adverse
effects on fuel metabolism and, ultimately, on health (92).

In times of net caloric deprivation, whether it occurs in response to extended
food scarcity or fasting, sustained intense physical activity, or even during the latter
hours of sleep (overnight fasting), the drop in blood glucose triggers the SNS to
release the catecholamines epinephrine and norepinephrine (93). It is well estab-
lished that both WAT and BAT are innervated by the SNS (45, 94, 95). However,
because sympathetic innervations are more profuse in BAT than in WAT, neural-
derived norepinephrine is presumed to play a greater role in the former, whereas
catecholamines derived from the circulation play a relatively greater role in WAT.
Nevertheless, there can be significant levels of norepinephrine in the immediate
vicinity of the nerve terminals. Another situation where norepinephrine turnover
is acutely regulated in WAT is during cold exposure (96); this is discussed together
with the regulation of BAT nonshivering thermogenesis.

The role of the SNS in the control of lipolysis has been investigated in many
ways through the past century and thoroughly reviewed recently (44). Briefly, these
studies showed that denervation of white fat depots lead to tissue hypertrophy (97,
98) and, reciprocally, that electrical stimulations of these WAT nerves led to fatty
acid release (99, 100). The responses elicited by these electrical stimulations were
blocked by manipulations that prevented norepinephrine release or norepinephrine
binding toβARs and were potentiated byα-adrenergic blockers and inhibitors of
phosphodiesterases (99, 101, 102). Thus, upon SNS stimulation, norepinephrine
is released, binds toβARs to activate adenylyl cyclase, and ultimately stimulates
lipolysis.

TheαARs and theβARs are the recipients of these catecholamine signals. They
are members of the large family of G-protein coupled receptors that are integral
membrane proteins of the plasma membrane. There are three subtypes ofβARs
(β1AR, β2AR, andβ3AR) (103, 103a, 104) all of which are expressed in white
and brown adipocytes (86, 105–107). However, the relative proportions of these
subtypes vary between species, fat depots, and metabolic status (108). For example,
rodent species possess abundant levels of theβ3AR and lesser amounts of the two
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other subtypes, whereas the reverse is generally the case in humans, although
there is clearly a need to examine intraabdominal depots in normal humans more
carefully.

The control of lipolysis by theβARs is principally initiated by the sequential
activation of adenylyl cyclase and cAMP-dependent protein kinase (PKA), ulti-
mately culminating in the phosphorylation of hormone-sensitive lipase (HSL) and
perilipin A (109–113). In addition to theβ-adrenergic stimulation of lipolysis,
catecholamines can also be antilipolytic through their interaction with theα2ARs
and its resulting inhibition of cAMP production. The balance between the relative
amounts of theβAR andα2AR can thus determine the relative efficacy of cate-
cholamines for triglyceride hydrolysis. In that respect, there is some evidence from
experimental studies in animals and humans that a shift to a higherα2/β ratio can
contribute to obesity and net lipid storage (114).

Rat and human HSL are 82.8 and 84 kDa proteins, respectively (115, 116). By
SDS gel electrophoresis, they migrate at an apparent molecular weight of 84 and
88 kDa, respectively, but under nondenaturing conditions, higher oligomer forms
have been observed (117). The significance of this oligomerization, and whether
it is artifactual, is not clear. By limited proteolysis and mutagenesis of HSL, it
has been suggested that the carboxy-terminal domain contains a catalytic triad
composed of Ser-423, Asp-703, and His-733, as well as the regulatory Ser-563,
Ser-600, Ser-659, and Ser-660 (118–121). Interestingly, Ser-600 is not a substrate
for PKA but rather for the extracellular signal-regulated kinases 1 and 2 (ERK)
(121). PKA phosphorylation of Ser-563 was once thought to be solely respon-
sible for enhanced HSL catalytic activity, but careful mutagenesis experiments
convincingly showed that Ser-659 and Ser-660 are the major sites of PKA regu-
lation (120). Nevertheless, because studies in vitro on phosphorylation-dependent
catalytic activity of HSL are modest (two- to threefold), they cannot explain the
usually more dramatic effect of PKA on lipolysis in vivo (122, 123). More re-
cently, it has become apparent that a significant fraction of the PKA-dependent
activation of lipolysis relies on the translocation of the lipase to the surface of the
lipid droplet (113, 124–126). Ser-659 and Ser-660 of HSL have been described as
obligatory for this process (127), as well as the phosphorylation of Ser-81, Ser-222,
and Ser-276 on perilipin (128). The exact mechanism of this regulation is not clear
yet, but the tight association of perilipin with the triglyceride droplet (129–131)
appears to be a tonic inhibitor of basal lipolysis (132, 133). Upon phosphorylation,
perilipin would seem to “loosen it’s grip” on the lipid droplet (113, 134, 135) and,
combined with a direct interaction with HSL, favor access of the lipase to its sub-
strate. Nevertheless, if there is a surface monolayer of phospholipids as proposed
(130), an additional level of regulation may be necessary in order for HSL to access
the triacylglycerol core. With evidence that ERK can phosphorylate Ser–600 of
HSL, we might speculate that it could favor protein-protein interactions with as
yet unknown partners required for full lipolytic activity. Figure 2 is a synthesis of
the regulation of lipolysis by theβARs.
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DIVERSITY OF β-ADRENERGIC SIGNALING
MECHANISMS OF ADIPOCYTES

The activation of PKA byβARs is well established. Here, we describe the activation
of various MAP kinase cascades in addition to this well-established cAMP/PKA
pathway. These include ERK1/2 MAPK and p38 MAPK. They are independent of
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each other in white and brown adipocytes (136) and activated in response to cate-
cholamines by different mechanisms. The activation of the ERK1/2 MAP kinases
by β-adrenergic agonists in white and brown adipocytes is controversial; we have
shown that it occurs as a result of receptor coupling to the heterotrimeric G protein
Gi (137) and does not involve PKA (136), which have both been corroborated by
some investigators (138) but not by others (139). The nature of the discrepancy
can be multiple, but the most obvious is the use by our colleagues of BRL-37344
instead of CL316243. On the other hand, p38 MAPK activation is downstream
of β-agonist increases in cAMP levels and PKA activity (136, 140). The ERK
pathway appears to account for 15%–25% of total lipolysis (121) (Figure 3). Our
pharmacologic analyses suggest that at low catecholamine concentrations, essen-
tially all lipolysis is activated by PKA, whereas the ERK1/2 pathway may be most
significant at higher concentrations of norepinephrine.

Although we have yet to establish the functional consequences of p38 MAPK
activation in white adipocytes, there is a very clear indication that in brown
adipocytes, the classic cAMP-dependent stimulation of the UCP1 gene requires
this pathway (136). All of these new findings require additional studies to establish
the metabolic ramifications of these simultaneous signaling cascades emanating
fromβARs, and there must be follow-up studies using primary adipose tissue sam-
ples from humans in order to assess the importance of these pathways in humans.
Other evidence indicates that the adipocyte-derived hormone leptin is also regu-
lated by the catecholamines. In animal models, as well as in humans, the secretion
of leptin is decreased byβ-agonists (141–143) but the mechanism(s) responsi-
ble for this suppression byβARs, including how leptin secretion is regulated in
general, is not yet understood.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2 Mechanisms of WAT lipolysis stimulation byβARs. In the basal state (A),
nonphosphorylated HSL is in the cytosol, probably bound to some cytosolic acceptors
such as lipotransin, and nonphosphorylated perilipin is tightly bound to the lipid droplet.
HSLs do not have free access to the droplet, so most of the basal lipolysis is attributed
to a nonidentified additional lipase. (B) When catecholamines interact with theβARs,
they can alternatively couple to both Gs and Gi (137, 138, 168). The former lead to the
sequential stimulation of adenylyl cyclase and PKA, which is bound via its regulatory
subunits to juxtamembranous anchor proteins called AKAPs. The catalytic subunits of
PKA can then access both HSL, which is phosphorylated at two serine residues in the
regulatory region (Ser-659 and Ser660), and perilipin, which is phosphorylated at six
serine residues, three in the regulatory region (Ser-81, Ser-222, and Ser-276) and three
in the carboxy-terminal portion (Ser-433, Ser-494, and Ser-517). On the other hand,
Gi activation leads to EGF receptor transactivation and activation of the ERK pathway.
The ERK pathway, in turn, can also lead to the phosphorylation of HSL (Ser-600) and
probably perilipin.
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Figure 3 Contribution of ERK to β3AR-agonist stimulated lipolysis in white
adipocytes. Differentiated 3T3-L1 cells were pretreated with increasing concentrations
of the MEK1/2 inhibitor PD098059 for 1 h, followed by the addition of CL316243
(100 nM). (A) ERK activation was measured by antiphospho ERK1/2 immunoreac-
tivity and (B) lipolysis was measured by assessing the glycerol content of the media.
Results are from three independent experiments.

THERMOGENESIS AND THE RELATIVE ROLES OF WHITE
AND BROWN ADIPOSE TISSUE IN BODY COMPOSITION
AND ENERGY HOMEOSTASIS

In mammals, including humans, total energy expenditure represents the sum of the
obligatory ATP utilized to sustain life, to generate muscular activity, and to respond
to the surrounding environment. The main component, which is obligatory energy
expenditure or obligatory thermogenesis, mostly refers to the basal metabolic rate
that has a significant thyroid hormone-regulated component (reviewed in Reference
144). This basic cost is attributed to nucleic acid synthesis and substrate cycling
(30%–35%), protein turnover (20%–25%), sodium and potassium pumping (20%–
25%), gluconeogenesis (7%), calcium pumping (5%), the actomyosin ATPase
(5%), and ureagenesis (2.5%) (145). Also included in the obligatory component of
thermogenesis is the thermic effect of food, the effort required to digest and absorb
nutrients. Measured thermic effects of nutrients are 0%–3% for fat, 5%–10% for
carbohydrates, and 20%–30% for proteins (146). Energy expenditure associated
with physical exertion occurs mainly within the skeletal muscle, with a small but
nonnegligible role of the liver. Finally, facultative or “adaptive” thermogenesis is
that which can be modulated by the environment and occurs in both muscle and
BAT in the form of shivering and nonshivering thermogenesis, respectively.

In response to cold exposure or overfeeding, mammals exhibit a complex re-
sponse marked by increases in oxygen consumption, food intake, and heat gen-
eration through nonshivering thermogenesis in BAT. An immense body of work
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has shown that BAT is uniquely capable of responding to various environmental
stimuli to generate heat from stored metabolic energy (55, 147–157). The major
mechanisms for all these responses involve SNS activation, especially during cold
exposure (151, 158, 159).

In response to sympathetic nervous system activation, BAT undergoes an or-
chestrated hyperplastic and hypertrophic expansion, increased blood flow, and
recruitment of lipid and carbohydrate fuels for oxidative metabolism (152, 160).
A unique and critical element of this thermogenic mechanism for dissipation of
the proton gradient in brown fat mitochondria was recognized to be due to a
brown fat–specific mitochondrial uncoupling protein (UCP). This uncoupling ac-
tivity in brown fat mitochondria is acutely under the control of the free fatty
acids (FFAs) that are released as a result of catecholamine-stimulated lipolysis
(161–163). At the cellular level, this “recruitment” of brown fat for thermogene-
sis occurs in response to noradrenergic stimulation and includes brown adipocyte
proliferation, increased expression and activity of the brown adipocyte–specific
UCP1, and mitochondrial biogenesis (164). All of these responses are mediated
by theβARs, with lesser supporting contributions from theα1AR. The prolifer-
ative expansion of BAT is mediated by theβ1AR (152, 165) and depends upon
elevations of intracellular cAMP levels (160). Because the cell population from
which these new brown adipocytes derive is a precursor, they expressβ1AR and
β2AR, but notβ3AR, the latter being expressed only in differentiated adipocytes.
It is not known conclusively whether there is a unique signaling cascade emanat-
ing from theβ1AR or whether it is simply the result of the greater sensitivity of
β1AR versusβ2AR for norepinephrine released from the nerve terminals inner-
vating BAT. There is also evidence that, at least in fetal rodent brown adipocytes,
MAP kinase cascades might be involved, as there is evidence for growth pro-
motion and protection from apoptosis in that model (166). The transcriptional
activation of the UCP1 gene appears to depend upon the combined stimulation
of cAMP/PKA irrespective of theβAR subtype, the p38α MAP kinase, and the
recruitment and p38-dependent activation of PGC-1α (W. Cao, K.W. Daniel, J.
Robidoux, P. Puigserver, A.V. Medvedev, X. Bai, L.M. Floering, B.M. Spiegel-
man, S. Collins manuscript submitted). Based upon what is also known about
PGC-1α orchestrating the program of mitochondriogenesis (85), it is also very
likely that the increased expression and activation of PGC-1α, which occurs as a
consequence ofβAR-stimulation and p38 MAPK activation (84; W. Cao, K.W.
Daniel, J. Robidoux, P. Puigserver, A.V. Medvedev, X. Bai, L.M. Floering, B.M.
Spiegelman, S. Collins manuscript submitted), will explain this aspect of SNS-
stimulated thermogenesis. Figure 4 relates our understanding of the regulation of
UCP1 by the SNS.

A role for brown fat thermogenesis in the regulation of body composition has
been discussed since the first reports describing how weight gain in overfed animals
was insufficient to account for the net calories consumed. Brown fat was found to
be the organ in which this apparent energy dissipation occurred, and the process
was dubbed diet-induced thermogenesis (see, e.g., Reference 149). The discovery
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Figure 4 Mechanisms of BAT thermogenesis stimulation byβARs. Under the basal
state, the PKA and p38 MAPK pathways are quiescent. When catecholamines interact
with theβARs, they lead to the sequential stimulation of adenylyl cyclase and PKA,
which in turn activates a specific protein kinase cascade, culminating in the activation of
p38α, and thus activation of a subset of transcription factor including ATF2. A second
phase response ensues in which newly transcribed PGC-1 transactivates members of
the peroxisome proliferator activated receptor (PPAR) family and therefore UCP1
expression.
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of thermogenicβ-adrenergic agonists in the mid-1980s that seemed to target BAT
(discussed further below and in Reference 168) further stoked enthusiasm that a
tissue classically responsible for the adaptation to prolonged cold could also play
a role in modulating body composition: the relative ratio of lean to fat mass. When
UCP1 was identified as the molecule within BAT mitochondria responsible for un-
coupling oxidative metabolism from ATP production, experiments were devised
to see if simply overexpressing this molecule in white fat could achieve a similar
end. The results were both fantastic and intriguing. Kozak & Kopecky generated
mice that expressed UCP1 from the adipocyte aP2 promoter (169). These ani-
mals were very lean, were resistant to diet-induced obesity, and could maintain
normal glucose tolerance in the face of the high-fat dietary challenge (170, 171).
What they didn’t necessarily expect was that the expression of the endogenous
UCP1 gene in brown adipocytes would be severely blunted (169). At this same
time, a different experiment in which BAT was ablated by a transgenic manipu-
lation also resulted in animals that were obese, hyperphagic, and insulin resistant
(172). Moreover, in certain founder mice, the brown adipocytes were able to es-
cape the effects of the diphtheria toxin transgene. These animals then slimmed
back down and returned to normal, once again supporting the notion that ther-
mogenesis in BAT can control body composition. Others explored the hypothesis
that if one enhanced the flow of metabolites through futile intermediary path-
ways, this would also serve as another means of thermogenesis. Indeed, Kozak &
colleagues (173) showed that transgenic overexpression of glycerol 3-phosphate
dehydrogenase resulted in abnormal development of WAT and BAT such that
the BAT depot was enhanced relative to WAT, rendering the animals increas-
ingly lean with age. Moreover, this response was independent of UCP1, whose
expression was greatly downregulated. In view of these and other studies sup-
porting a role for thermogenesis, BAT in particular, in body weight regulation, it
was quite surprising that mice with a targeted disruption of the UCP1 gene were
in fact not obese, but were quite sensitive to the cold (174). At this time, other
members of the UCP family had been discovered (reviewed in Reference 175),
with suggestions that they may function analogously to UCP1 to dissipate excess
caloric intake in mice prone to diet-induced obesity (176). It now appears, after
several years of intensive research on these proteins, that their function in the mi-
tochondria is not akin to UCP1 (177). Instead, UCP2 and UCP3 play a role, still
undefined, in lipid oxidation in the mitochondria. The plot has thickened in the
continuing saga of BAT and UCP1, thermogenesis, and body composition with
the report that UCP1-deficient mice are in fact less prone to diet-induced obe-
sity (178) than their wild-type counterparts, an observation we have also made in
support of these findings (L.M. Floering & S. Collins, unpublished). From these
new studies, there is now discussion in the field that in rodents, the interscapular
BAT depot and its unique molecule UCP1 comprise an efficiently designed stove
for generating heat from metabolic fuel in times of environmental challenges.
The more intriguing question thus arises, What is the mechanism of the diet-
induced thermogenesis in the UCP1-deficient mouse? The answers will no doubt be
interesting.
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THE REGULATION OF βARs IN ADIPOSE TISSUE
AND ROLE IN OBESITY

We have gained much information about obesity and its metabolic consequences
from the monogenic models in rodents, without which much of the work today
on adipocyte biology, obesity, and insulin resistance could not have been accom-
plished. With regard to fat metabolism, it was known for many years that the
genetically “obese” C57BL/6Job/obmouse (now known as the leptin-deficient
C57BL/6JLep-ob/Lep-ob) exhibited a marked inability to effectively mobilize triglyc-
erides from WAT and was unable to recruit BAT for thermogenesis in response to
cold temperature (reviewed in Reference 179). Because at the time it was generally
accepted that only a singleβAR subtype existed in adipose tissue (180, 181), ef-
forts to understand the dysregulatedβAR responses in adipocytes met a dead-end.
As more selective sympathomimetic agents were developed that could distinguish
betweenβ1- andβ2ARs, this view began to change. With the discovery of the
β3AR in 1989 (103, 103a, 104), we reevaluated the expression and function of the
adipocyteβARs from lean versus leptin-deficientob/obmice and found a dramatic
decrease in bothβ1- andβ3ARs mRNA levels. Through a series of detailed phar-
macologic analyses, these changes inβAR subtype expression were shown to be
responsible for the inability to mobilize stored fat in response toβ-agonists (86).

Other models of congenital obesity, such asdb/db, tubby, fat, and the Zucker
fatty rat, show similar decreases inβ3AR andβ1AR expression, the extent of which
tends to mirror the severity of obesity (182, 183). However, the vast majority of
human obesity is not due to single gene mutations, but is most often a result
of dietary excess and the resulting metabolic complications. As a research tool to
more adequately reflect this fact, nonmutant C57/BL6J (B6) mice raised on a high-
fat diet (184) show similar defects inβAR function and expression in adipocytes
(185). Thus, in essentially all models of obesity, there is a significant diminution
in the expression and function of theβARs.

The notion that one could develop therapeutic agents to stimulate thermogenesis
as antiobesity and antidiabetic treatments arose out the discovery ofβ-adrenerigc
compounds that could increase oxygen consumption and cause selective loss of
white adipose stores in the extremely obese mutantob/ob mouse (186). Much
of the history of these discoveries and the unique effects ofβ3AR-selective ago-
nists as thermogenic agents have been previously reviewed (168). When treated
in the laboratory withβ3AR-selective agonists, a variety of mammals exhibit a
vigorous thermogenic response akin to cold exposure, supporting the notion that
the β3AR plays a significant role in this thermogenic response (185, 187–192).
However, perhaps the most puzzling but immensely intriguing feature observed is
the de novo appearance of brown adipocytes within typical white adipose depots,
suggesting a close interplay between these two adipocyte species. The source of
these brown adipocytes is unknown. They may arise from proliferation, but no
evidence in support of this can be found (193). There is currently discussion in
the field that small pockets of dedifferentiated brown adipocytes from the neonatal
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period may be present in white adipose depots, expressing very low amounts of
β3AR, but which might be triggered to redifferentiate (26). However, as discussed
above, although this response to catecholamines clearly has a predominant cAMP
component, other evidence indicates that MAP kinase pathways are activated by
theseβARs in adipocytes (136, 137, 194), and the targets of these pathways
may also contribute to the sympathetically driven brown adipocyte growth and
differentiation.

Related to the improvements in body composition that were observed in animals
treated withβ3AR agonists came further support for a direct role of adipocytes
in regulating systemic glucose homeostasis (185, 195, 196). Becauseβ3AR are
expressed almost exclusively in fat, effects of these agents are expected to be initi-
ated by alterations in fat metabolism. Treatment with Cl316243 results in enhanced
sensitivity of both whole-body glucose uptake and suppression of hepatic glucose
production (195). These effects are accompanied by increased glucose uptake in
adipose tissue (WAT and BAT) with no effect in multiple muscle groups studied
(197). Thus, increasing glucose uptake selectively in fat withβ3AR agonists may
improve whole-body glucose uptake, with the effects in fat indirectly resulting in
increased insulin sensitivity in liver. In addition,β3AR agonists may be efficacious
by changing the release of some adipocyte product that influences systemic insulin
sensitivity.

In response to these metabolic improvements, pharmaceutical companies have
generated a series of humanβ3AR agonists and antagonists (198–201). Treat-
ment of rhesus monkeys with L-755507, a potent and selective partial agonist for
both the human and rhesus monkeyβ3AR, resulted in increased lipolysis, ele-
vated metabolic rate, and increased expression of UCP1 in brown adipose tissue
(190). The antagonists were shown to inhibit agonist-induced lipolysis in cells
expressing cloned humanβ3ARs and in isolated nonhuman primate adipocytes.
The use of cloned humanβ3ARs as screening tools have enabled the discovery of
more selective humanβ3AR agonists (199, 201, 202) and should lead to further
improvements in potency and pharmacokinetics in the future.

SUMMARY

Work on the molecular aspects of catecholamine-stimulated adipose tissue meta-
bolism and thermogenesis is built upon the august foundations of earlier biochem-
ical and physiological investigators. We have tried to infuse our review of new
developments in the field with a historical outlook that allows one to understand
the current molecular breakthroughs in fat cell biology with an eye toward the unan-
swered questions that we must attend to in the future. These include the molecular
decisions during mesenchymal development that distinguish white from brown
adipocytes, and how signaling pathways triggered by neurotransmitters and pep-
tide hormones or growth factors are able to integrate their signals and their common
signaling molecules to manage the relatively irregular patterns of fuel acquisition
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and expenditure. Current and future discoveries at the molecular level in adipocyte
biology will ultimately be proven or denied in the world of living animals and
humans. We hope that our growing appreciation of the delicate fuel homeostasis
of the adipose organ will lead to promising avenues of therapeutic intervention in
order to minimize adipose mass enlargement and at the same time prevent overflow
of NEFAs to nonadipose tissues.
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